top of page

The Science Behind Ipamorelin and CJC-1295

Oct 9, 2024

9 min read

Written by Johnathon Anderson, Ph.D., a research scientist, and Associate Professor at the University of California Davis School of Medicine 


What Are Ipamorelin and CJC-1295?

Ipamorelin and CJC-1295 are peptides that signal to the pituitary gland to make more growth hormone in the body. These peptides are derived from small proteins naturally found in tissues.


Do Ipamorelin and CJC-1295 Influence Myotubule Physiology?

Ipamorelin and CJC-1295 contribute to myotubule augmentation via IGF-1 signaling pathways. IGF-1 plays a critical role in myotubule formation via the well-studied PI3K/Akt signaling pathway, among others. (17,18)


Do Ipamorelin and CJC-1295 Effect Collagenous Fibrils?

Ipamorelin and CJC-1295 regulate formation of collagenous fibrils. (32)


IGF-1 increase elastin fibers in fibroblasts

They have also been shown to influence elastin fiber formation via IGF-1 signaling pathways. (43–48)



Buy Ipamorelin CJC-1295












References

 

1.          Anderson, J. LinkedIn Profile. LinkedIn https://www.linkedin.com/in/johnathonanderson/ (2024).

2.          Volpi, E., Nazemi, R. & Fujita, S. Muscle tissue changes with aging. Curr Opin Clin Nutr Metab Care 7, 405–410 (2004). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2804956/

3.          Chertman, L. S., Merriam, G. R. & Kargi, A. Y. Growth Hormone in Aging. Endotext (2019). https://www.ncbi.nlm.nih.gov/books/NBK279163/

4.          Srikanthan, P. & Karlamangla, A. S. Muscle mass index as a predictor of longevity in older adults. American Journal of Medicine 127, 547–553 (2014). https://www.amjmed.com/article/S0002-9343(14)00138-7/fulltext

5.          Velloso, C. P. Regulation of muscle mass by growth hormone and IGF-I. Br J Pharmacol 154, 557–568 (2008). https://bpspubs.onlinelibrary.wiley.com/doi/10.1038/bjp.2008.153

6.          Zhu, H. et al. Reference ranges for serum insulin-like growth factor I (IGF-I) in healthy Chinese adults. PLoS One 12, e0185561 (2017). https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0185561

7.          National Library of Medicine. IGF-1 (Insulin-like Growth Factor 1) Test. MedlinePlus.gov https://medlineplus.gov/lab-tests/igf-1-insulin-like-growth-factor-1-test/#:~:text=This%20test%20measures%20the%20amount,growth%20of%20bones%20and%20tissues. (2024).

8.          Taaffe, D. R., Jin, I. H., Vu, T. H., Hoffman, A. R. & Marcus, R. Lack of effect of recombinant human growth hormone (GH) on muscle morphology and GH-insulin-like growth factor expression in resistance-trained elderly men. J Clin Endocrinol Metab 81, 421–425 (1996). https://academic.oup.com/jcem/article-abstract/81/1/421/2649610?redirectedFrom=fulltext&login=false

9.          Welle, S., Thornton, C., Statt, M. & Mchenry, B. Growth hormone increases muscle mass and strength but does not rejuvenate myofibrillar protein synthesis in healthy subjects over 60 years old. J Clin Endocrinol Metab 81, 3239–3243 (1996). https://pubmed.ncbi.nlm.nih.gov/8784075/

10.        Rudman, D. et al. Effects of Human Growth Hormone in Men over 60 Years Old. http://dx.doi.org/10.1056/NEJM199007053230101 323, 1–6 (1990). https://www.nejm.org/doi/10.1056/NEJM199007053230101?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200www.ncbi.nlm.nih.gov

11.        Nass, R. et al. Effects of an oral ghrelin mimetic on body composition and clinical outcomes in healthy older adults: A randomized trial. Ann Intern Med 149, 601–611 (2008).

12.        Giannoulis, M. G. et al. The Effects of Growth Hormone and/or Testosterone in Healthy Elderly Men: A Randomized Controlled Trial. J Clin Endocrinol Metab 91, 477–484 (2006). https://www.acpjournals.org/doi/full/10.7326/0003-4819-149-9-200811040-00003?rfr_dat=cr_pub++0pubmed&url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org

13.        Blackman, M. R. et al. Growth Hormone and Sex Steroid Administration in Healthy Aged Women and Men: A Randomized Controlled Trial. JAMA 288, 2282–2292 (2002). https://jamanetwork.com/journals/jama/fullarticle/1108358

14.        Brill, K. T. et al. Single and Combined Effects of Growth Hormone and Testosterone Administration on Measures of Body Composition, Physical Performance, Mood, Sexual Function, Bone Turnover, and Muscle Gene Expression in Healthy Older Men. J Clin Endocrinol Metab 87, 5649–5657 (2002). https://pubmed.ncbi.nlm.nih.gov/12466367/

15.        Lange, K. H. W. et al. GH Administration Changes Myosin Heavy Chain Isoforms in Skeletal Muscle But Does Not Augment Muscle Strength or Hypertrophy, Either Alone or Combined with Resistance Exercise Training in Healthy Elderly Men. J Clin Endocrinol Metab 87, 513–523 (2002). https://pubmed.ncbi.nlm.nih.gov/11836279/

16.        Yarasheski, K. E., Zachwieja, J. J., Campbell, J. A. & Bier, D. M. Effect of growth hormone and resistance exercise on muscle growth and strength in older men. https://doi.org/10.1152/ajpendo.1995.268.2.E268 268, (1995). https://journals.physiology.org/doi/abs/10.1152/ajpendo.1995.268.2.E268?rfr_dat=cr_pub++0pubmed&url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org

17.        Hennebry, A. et al. IGF1 stimulates greater muscle hypertrophy in the absence of myostatin in male mice. Journal of Endocrinology 234, 187–200 (2017).

18.        Yoshida, T. & Delafontaine, P. Mechanisms of IGF-1-Mediated Regulation of Skeletal Muscle Hypertrophy and Atrophy. Cells 2020, Vol. 9, Page 1970 9, 1970 (2020).

19.        Al-Samerria, S. & Radovick, S. Exploring the Therapeutic Potential of Targeting GH and IGF-1 in the Management of Obesity: Insights from the Interplay between These Hormones and Metabolism. International Journal of Molecular Sciences 2023, Vol. 24, Page 9556 24, 9556 (2023). https://joe.bioscientifica.com/view/journals/joe/234/2/JOE-17-0032.xml

20.        Generali, J. A. & Cada, D. J. Recombinant Human Growth Hormone: HIV-Related Lipodystrophy. http://dx.doi.org/10.1310/hpj4905-432 49, 432–434 (2014). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4062715/

21.        Adrian, S. et al. The Growth Hormone Releasing Hormone Analogue, Tesamorelin, Decreases Muscle Fat and Increases Muscle Area in Adults with HIV. J Frailty Aging 8, 154 (2019). https://link.springer.com/article/10.14283/jfa.2018.45

22.        Kopchick, J. J., Berryman, D. E., Puri, V., Lee, K. Y. & Jorgensen, J. O. L. The effects of growth hormone on adipose tissue: old observations, new mechanisms. Nature Reviews Endocrinology 2019 16:3 16, 135–146 (2019). https://www.nature.com/articles/s41574-019-0280-9

23.        Siemensma, E. P. C. et al. Beneficial Effects of Growth Hormone Treatment on Cognition in Children with Prader-Willi Syndrome: A Randomized Controlled Trial and Longitudinal Study. J Clin Endocrinol Metab 97, 2307–2314 (2012). https://academic.oup.com/jcem/article-abstract/97/7/2307/2834113?redirectedFrom=fulltext

24.        Stephen, M. D. et al. Health-related quality of life and cognitive functioning in pediatric short stature: Comparison of growth-hormone-naïve, growth-hormone-treated, and healthy samples. Eur J Pediatr 170, 351–358 (2011). https://link.springer.com/article/10.1007/s00431-010-1299-z

25.        Baker, L. D. et al. Effects of Growth Hormone–Releasing Hormone on Cognitive Function in Adults With Mild Cognitive Impairment and Healthy Older Adults: Results of a Controlled Trial. Arch Neurol 69, 1420–1429 (2012). https://jamanetwork.com/journals/jamaneurology/fullarticle/1306261

26.        Deijen, J. B., De Boer, H. & Van Der Veen, E. A. Cognitive changes during growth hormone replacement in adult men. Psychoneuroendocrinology 23, 45–55 (1998). https://www.sciencedirect.com/science/article/abs/pii/S0306453097000929?via%3Dihub

27.        Maric, N. P. et al. Psychiatric and neuropsychological changes in growth hormone-deficient patients after traumatic brain injury in response to growth hormone therapy. Journal of Endocrinological Investigation 2010 33:11 33, 770–775 (2014). https://link.springer.com/article/10.1007/BF03350340

28.        Johansson, J. O. et al. Treatment of Growth Hormone-Deficient Adults with Recombinant Human Growth Hormone Increases the Concentration of Growth Hormone in the Cerebrospinal Fluid and Affects Neurotransmitters. Neuroendocrinology 61, 57–66 (1995). https://karger.com/nen/article-abstract/61/1/57/224415/Treatment-of-Growth-Hormone-Deficient-Adults-with?redirectedFrom=fulltext

29.        Lai, Z. et al. Age-related reduction of human growth hormone-binding sites in the human brain. Brain Res 621, 260–266 (1993). https://pubmed.ncbi.nlm.nih.gov/8242339/

30.        Pathipati, P. et al. Growth hormone and prolactin regulate human neural stem cell regenerative activity. Neuroscience 190, 409–427 (2011). https://pubmed.ncbi.nlm.nih.gov/21664953/

31.        Chung, J. Y., Kim, H. J. & Kim, M. The protective effect of growth hormone on Cu/Zn superoxide dismutase-mutant motor neurons. BMC Neurosci 16, 1–11 (2015). https://bmcneurosci.biomedcentral.com/articles/10.1186/s12868-015-0140-z

32.        Siebert, D. M. & Rao, A. L. The Use and Abuse of Human Growth Hormone in Sports. https://doi.org/10.1177/1941738118782688 10, 419–426 (2018). https://journals.sagepub.com/doi/10.1177/1941738118782688

33.        Longobardi, S. et al. Growth Hormone (GH) Effects on Bone and Collagen Turnover in Healthy Adults and Its Potential as a Marker of GH Abuse in Sports: A Double Blind, Placebo-Controlled Study. J Clin Endocrinol Metab 85, 1505–1512 (2000). https://pubmed.ncbi.nlm.nih.gov/10770189/

34.        Nelson, A. E. et al. Pharmacodynamics of Growth Hormone Abuse Biomarkers and the Influence of Gender and Testosterone: A Randomized Double-Blind Placebo-Controlled Study in Young Recreational Athletes. J Clin Endocrinol Metab 93, 2213–2222 (2008). https://pubmed.ncbi.nlm.nih.gov/18381573/

35.        Doessing, S. et al. Growth hormone stimulates the collagen synthesis in human tendon and skeletal muscle without affecting myofibrillar protein synthesis. J Physiol 588, 341–351 (2010). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2821728/

36.        Holt, R. I. G. & Ho, K. K. Y. The Use and Abuse of Growth Hormone in Sports. Endocr Rev 40, 1163–1185 (2019).

37.        Khatri, M., Naughton, R. J., Clifford, T., Harper, L. D. & Corr, L. The effects of collagen peptide supplementation on body composition, collagen synthesis, and recovery from joint injury and exercise: a systematic review. Amino Acids 53, 1493–1506 (2021). https://pubmed.ncbi.nlm.nih.gov/31180479/

38.        Lee, J., Bridge, J. E., Clark, D. R., Stewart, C. E. & Erskine, R. M. Collagen supplementation augments changes in patellar tendon properties in female soccer players. Front Physiol 14, 1089971 (2023). https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2023.1089971/full

39.        Kerkhofs, M. et al. Sleep-promoting effects of growth hormone-releasing hormone in normal men. https://doi.org/10.1152/ajpendo.1993.264.4.E594 264, (1993). https://journals.physiology.org/doi/abs/10.1152/ajpendo.1993.264.4.E594?journalCode=ajpendo

40.        Perras, B., Marshall, L., Köhler, G., Born, J. & Fehm, H. L. Sleep and endocrine changes after intranasal administration of growth hormone-releasing hormone in young and aged humans. Psychoneuroendocrinology 24, 743–757 (1999). https://pubmed.ncbi.nlm.nih.gov/10451909/

41.        Copinschi, G. et al. Prolonged Oral Treatment with MK-677, a Novel Growth Hormone Secretagogue, Improves Sleep Quality in Man. Neuroendocrinology 66, 278–286 (1997). https://karger.com/nen/article-abstract/66/4/278/224995/Prolonged-Oral-Treatment-with-MK-677-a-Novel?redirectedFrom=fulltext

42.        Kluge, M. et al. Ghrelin alone or co-administered with GHRH or CRH increases non-REM sleep and decreases REM sleep in young males. Psychoneuroendocrinology 33, 497–506 (2008). https://www.sciencedirect.com/science/article/abs/pii/S0306453008000292

43.        Edmondson, S. R., Thumiger, S. P., Werther, G. A. & Wraight, C. J. Epidermal Homeostasis: The Role of the Growth Hormone and Insulin-Like Growth Factor Systems. Endocr Rev 24, 737–764 (2003). https://academic.oup.com/edrv/article-abstract/24/6/737/2567213?redirectedFrom=fulltext&login=false

44.        Recombinant Human Growth Hormone Accelerates Wound Healing i... : Annals of Surgery. https://journals.lww.com/annalsofsurgery/abstract/1994/07000/recombinant_human_growth_hormone_accelerates_wound.4.aspx.

45.        Jørgensen, P. H., Bang, C., Andreassen, T. T., Flyvbjerg, A. & Ørskov, H. Dose-response study of the effect of growth hormone on mechanical properties of skin graft wounds. Journal of Surgical Research 58, 295–301 (1995). https://www.journalofsurgicalresearch.com/article/S0022-4804(85)71046-3/abstract

46.        The Effect of Topically Applied Recombinant Human Growth Hormone on Wound Healing in Pigs. Wounds 21, (2009). https://pubmed.ncbi.nlm.nih.gov/25903440/

47.        Cristóbal, L. et al. Local Growth Hormone Therapy for Pressure Ulcer Healing on a Human Skin Mouse Model. Int J Mol Sci 20, (2019). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6747216/

48.        Dioufa, N. et al. Acceleration of wound healing by growth hormone-releasing hormone and its agonists. Proc Natl Acad Sci U S A 107, 18611–18615 (2010). https://www.pnas.org/doi/full/10.1073/pnas.1013942107

49.        Krantz, E., Trimpou, P. & Landin-Wilhelmsen, K. Effect of Growth Hormone Treatment on Fractures and Quality of Life in Postmenopausal Osteoporosis: A 10-Year Follow-Up Study. J Clin Endocrinol Metab 100, 3251–3259 (2015). https://pubmed.ncbi.nlm.nih.gov/26312576/

50.        Landin-Wilhelmsen, K., Nilsson, A., Bosaeus, I. & Bengtsson, B. Å. Growth Hormone Increases Bone Mineral Content in Postmenopausal Osteoporosis: A Randomized Placebo-Controlled Trial. Journal of Bone and Mineral Research 18, 393–405 (2003). https://academic.oup.com/jbmr/article-abstract/18/3/393/7592512?redirectedFrom=fulltext&login=false

51.        Gillberg, P., Mallmin, H., Petrén-Mallmin, M., Ljunghall, S. & Nilsson, A. G. Two Years of Treatment with Recombinant Human Growth Hormone Increases Bone Mineral Density in Men with Idiopathic Osteoporosis. J Clin Endocrinol Metab 87, 4900–4906 (2002). https://academic.oup.com/jcem/article-abstract/87/11/4900/2823079?redirectedFrom=fulltext

52.        Van Der Sluis, I. M. et al. Long-Term Effects of Growth Hormone Therapy on Bone Mineral Density, Body Composition, and Serum Lipid Levels in Growth Hormone Deficient Children: A 6-Year Follow-Up Study. Horm Res 58, 207–214 (2002). https://pubmed.ncbi.nlm.nih.gov/12401939/

53.        Xue, P., Wang, Y., Yang, J. & Li, Y. Effects of growth hormone replacement therapy on bone mineral density in growth hormone deficient adults: A meta-analysis. Int J Endocrinol 2013, (2013). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3652209/

54.        Olney, R. C. Regulation of bone mass by growth hormone. Med Pediatr Oncol 41, 228–234 (2003). https://onlinelibrary.wiley.com/doi/10.1002/mpo.10342

55.        Giustina, A., Mazziotti, G. & Canalis, E. Growth Hormone, Insulin-Like Growth Factors, and the Skeleton. Endocr Rev 29, 535 (2008). https://pubmed.ncbi.nlm.nih.gov/18436706/

56.        Genth-Zotz, S. et al. Recombinant Growth Hormone Therapy in Patients With Ischemic Cardiomyopathy. Circulation 99, 18–21 (1999). https://www.ahajournals.org/doi/10.1161/01.cir.99.1.18?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed

57.        Osterziel, K. J. et al. Randomised, double-blind, placebo-controlled trial of human recombinant growth hormone in patients with chronic heart failure due to dilated cardiomyopathy. Lancet 351, 1233–1237 (1998). https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(97)11329-0/abstract

58.        Erafino, S. et al. A Preliminary Study of Growth Hormone in the Treatment of Dilated Cardiomyopathy. https://doi.org/10.1056/NEJM199603283341301 334, 809–814 (1996). https://www.nejm.org/doi/full/10.1056/NEJM199603283341301

59.        Amirpour, A. et al. The Effect of 3-Month Growth Hormone Administration and 12-Month Follow-Up Duration among Heart Failure Patients Four Weeks after Myocardial Infarction: A Randomized Double-Blinded Clinical Trial. Cardiovasc Ther 2021, (2021). https://onlinelibrary.wiley.com/doi/10.1155/2021/2680107

60.        Colao, A. et al. Growth Hormone Treatment on Atherosclerosis: Results of a 5-Year Open, Prospective, Controlled Study in Male Patients with Severe Growth Hormone Deficiency. J Clin Endocrinol Metab 93, 3416–3424 (2008). https://academic.oup.com/jcem/article-abstract/93/9/3416/2596763?redirectedFrom=fulltext

61.        Maison, P. & Chanson, P. Cardiac Effects of Growth Hormone in Adults With Growth Hormone Deficiency. Circulation 108, 2648–2652 (2003). https://www.ahajournals.org/doi/10.1161/01.CIR.0000100720.01867.1D?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed

62.        Caicedo, D., Díaz, O., Devesa, P. & Devesa, J. Growth Hormone (GH) and Cardiovascular System. International Journal of Molecular Sciences 2018, Vol. 19, Page 290 19, 290 (2018). https://www.mdpi.com/1422-0067/19/1/290

63.        Caicedo, D., Devesa, P., Alvarez, C. V. & Devesa, J. Why Should Growth Hormone (GH) Be Considered a Promising Therapeutic Agent for Arteriogenesis? Insights from the GHAS Trial. Cells 2020, Vol. 9, Page 807 9, 807 (2020). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7226428/

64.        Thum, T. et al. Age-Dependent Impairment of Endothelial Progenitor Cells Is Corrected by Growth Hormone Mediated Increase of Insulin-Like Growth Factor-1. Circ Res 100, 434–443 (2007). https://www.ahajournals.org/doi/10.1161/01.RES.0000257912.78915.af

65.        Falutz, J. et al. Long-term safety and effects of tesamorelin, a growth hormone-releasing factor analogue, in HIV patients with abdominal fat accumulation. AIDS 22, 1719–1728 (2008). https://journals.lww.com/aidsonline/fulltext/2008/09120/long_term_safety_and_effects_of_tesamorelin,_a.6.aspx

66.        Stanley, T. L. et al. Reduction in Visceral Adiposity Is Associated With an Improved Metabolic Profile in HIV-Infected Patients Receiving Tesamorelin. Clinical Infectious Diseases 54, 1642–1651 (2012). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3348954/

67.        Falutz, J. et al. Effects of Tesamorelin (TH9507), a Growth Hormone-Releasing Factor Analog, in Human Immunodeficiency Virus-Infected Patients with Excess Abdominal Fat: A Pooled Analysis of Two Multicenter, Double-Blind Placebo-Controlled Phase 3 Trials with Safety Extension Data. J Clin Endocrinol Metab 95, 4291–4304 (2010). https://pubmed.ncbi.nlm.nih.gov/20554713/

68.        Broglio, F. et al. Endocrine activities of alexamorelin (Ala-His-d-2-methyl-Trp-Ala-Trp-d-Phe-Lys-NH2), a synthetic GH secretagogue, in humans. Eur J Endocrinol 143, 419–425 (2000). https://academic.oup.com/ejendo/article-lookup/doi/10.1530/eje.0.1430419

69.        Engström, G., Lindström, P. & Sävendahl, L. Lack of Evidence for Acute Effects of Growth Hormone-Releasing Hormone on Serum Insulin and Glucose Levels in Normal and Hypophysectomized Rats. Horm Res 41, 21–26 (1994). https://pubmed.ncbi.nlm.nih.gov/8013938/

70.        Falutz, J. et al. Effects of Tesamorelin (TH9507), a Growth Hormone-Releasing Factor Analog, in Human Immunodeficiency Virus-Infected Patients with Excess Abdominal Fat: A Pooled Analysis of Two Multicenter, Double-Blind Placebo-Controlled Phase 3 Trials with Safety Extension Data. J Clin Endocrinol Metab 95, 4291–4304 (2010). https://pubmed.ncbi.nlm.nih.gov/20554713/



Oct 9, 2024

9 min read

SHOP
INFORMATION
SUPPORT
LEGAL
  • Instagram
  • Twitter
  • LinkedIn

2024 © Peptide Systems, LLC

PHONE

(833) 484-9696

HOURS

Monday - Friday 9AM - 4PM PST

 

EMAIL

support@peptidesystems.com

 

SHIPPING

Mon - Fri (except holidays)

Orders placed after 12p PST will be

shipped the following business day.

Holiday Closures

New Year's Day

Martin Luther King Day

4th of July

Thanksgiving

Christmas and Christmas Eve 

ADDRESS

Peptide Systems

50 Iron Point Circle

Suite 140

Folsom, CA 95630
USA

credi card icons

*All products on this site are for Research, Development use only. Products are Not for Human consumption of any kind. The statements made within this website have not been evaluated by the US Food and Drug Administration. The statements and the products of this company are not intended to diagnose, treat, cure or prevent any disease. Peptide Systems is a chemical supplier. Peptide Systems is not a compounding pharmacy or chemical compounding facility as defined under 503A of the Federal Food, Drug, and Cosmetic act. Peptide Systems is not an outsourcing facility as defined under 503B of the Federal Food, Drug, and Cosmetic Act.

bottom of page